by Usha Govindarajulu | Jan 17, 2024 | Biostatistics, Blog, Usha Govindarajulu
January 17, 2023 In an article that appeared in Biometrical Journal, Hoogland et al (2023) had aimed to combine the benefits of flexible parametric survival modeling and regularization in order to improve risk prediction modeling in the context of time-to-event data....
by Usha Govindarajulu | Jan 3, 2024 | Biostatistics, Blog, Usha Govindarajulu
January 3, 2023 In an article that appeared in Biometrical Journal, Le Bourdonnec et al (2023) discussed a method to address unmeasured confounding in cohort studies by an instrumental varible (IV) method for a time fixed expousre on an outcome trajectory, repeatedly...
by Usha Govindarajulu | Dec 20, 2023 | Biostatistics, Usha Govindarajulu
December 20, 2023 In article that appeared in Statistics in Medicine, Denz et al explored different methods for modeling of adjusted survival curves especially in observational studies, which tend to have issues with confounding. The authors also brought in...
by Usha Govindarajulu | Dec 6, 2023 | Biostatistics, Blog, Usha Govindarajulu
December 6, 2023 In article that appeared in Biostatistics, Wu et al describe a joint modeling approach of longitduinal data like quality of life and survival data on a retrospective time scale and handling of informative censoring issues in a two arm clinical trial...
by Usha Govindarajulu | Nov 24, 2023 | Biostatistics, Blog, Usha Govindarajulu
Statistical issues in survival analysis (Part XVIII) November 22, 2023 In this article that appeared in Journal of Probability and Statistics, the authors described a new test as an alternative to the log-rank test to compare late differences between survival curves. ...